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M otivation

e Areuserssimilar to oneanother in thar
association pattern in long run?

* Doesindividual user show consistent daily
association pattern across multiple days?

o |ftheanswer to Q2isyes, then how do wefind
some summarized presentation of the daily
association pattern of a user?

e Can | group usersusing the summarized
presentation obtained in Q3, leading to groups that
show similar association pattern?
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Wireless L AN traces used
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e Tracesfrom environmentswith various settings.

* |n each trace we have AP association history of
Individual nodes, and we can further derive
association time of each node to each AP.
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o Group association matrix-
Do users have similar
association pattern across

Matricesrepresentation

e Individual association matrix-
Does individual user have
similar association pattern

a period of time?

Each column for a user

/

Each row for an AP
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Principal Component Analysis

 Applied asatool tofind thedirectionsthat carry
most power, or the strongest association trend, in
the matrices.

 |f the data pointsshow consistent trend, thefirst
few PCs have high relative weights. Otherwise
weightsdistributed across many PCs.

AR2
AP2
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roup Association Matrices
B -

* For large, heter ogeneous
user group, thelong-run
association patternsare
diverse. Many PCscarry
some weights, without
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| ndividual Assouahon Matrlces

e For most individuals, ther
daily association matrices
have few PCsthat carry
most of the power,
Indicating that nodes show
less diver se association
pattern across days.

 Thegraphsshow the
per centage of nodes for
which its p-percentile of
power in individual
association matricesis
carried by x PCswith
highest weights.
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Similarity between Individual Nodes

e Principal components of individual association
matrices with high weightsarethe*axes’ along
which the power of data pointscan be maximized.

 PCsof auser areunit-length vectors describing the
major trends of itsassociation pattern. Each PC’s
relative importanceisgiven by the eigenvalues.

 Wecan comparethesimilarity between 2 sets of
iIndividual association pattern by weighted inner -
product of the PC set.
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Similarity between Individual Nodes
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similarity index, we can 1 21

21 31 .
put nodesinto sub-group, PC for groUp asso. matrix

and moreweightsare - AN,
- *Group A/B: based on Sim-index,
carried by fewer PCsfor putting nodes having similar individual

group association matrices association pattern in a group.
*Group C: random group.

of these sub-groups. -Group D: the whole population group.

ui, vj: PCs from different users
Wui, Wvj: Weights for PCs in its set
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Similarity between Individual Nodes

« Comparing theweights

carried by top-10 PCs (Sim-index threshold = 0.8)
between groups formed by 1 ,
sm-index (usersareinsame 8 . ..
group if sm-index higher g an
than threshold) and random & °°| g
groups of the same size. 8 aa

e If weusehigher threshold for 8 oz
similarity index, the groups © ol
chosen show higher common O 02 04 06 08 1
trend in association patterns. Random group
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Conclusion

 PCA isapplied to find common association trends
across multiple users, and across multiple days for
individual user. Users do not share acommon
trend, but most individual users show consistent
association trend acr oss days.

* Principal components of a node provides a set of
summary vectorsto represent the strongest trends
of itsassociation pattern.

e Utilizing the ssimilarity indexes, we can group
similar usersin sub-groups.
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Future Work
« Utilizethe grouping technique developed to design a
routing protocol taking advantage of existing ssmilar

user sub-groups.

o Utilizethe PCsof nodesto design a anomaly
detection schemeto identify when a user deviates
from itstypical behavior.
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