

Principal Component Analysis of User Association Patterns in Wireless LAN Traces

Wei-jen Hsu and Ahmed Helmy

Department of Electrical Engineering University of Southern California {weijenhs, helmy}@usc.edu http://nile.usc.edu/MobiLib/

Motivation

- Are users similar to one another in their association pattern in long run?
- Does individual user show consistent daily association pattern across multiple days?
- If the answer to Q2 is yes, then how do we find some summarized presentation of the daily association pattern of a user?
- Can I group users using the summarized presentation obtained in Q3, leading to groups that show similar association pattern?

Wireless LAN traces used

Trace	Unique	Unique	Unique	Trace	Heer type	Freironmont	Analyzed part	Users in	Labels used
SOUICE	users	APs	buildings	duration	oser type	ENVIRONMENT	in this paper	analyzed part	in paper
USC	5,580	79	73	Dec 03-Now (trap)	Generic	Whole	Apr. 20, '05 to	5,580	USC-05su
		ports		Apr 20 '05-Aug 7 '05 (detail)		campus	Aug. 7 ⁷ 05		
Dartmouth[6]	10,296	623	188	Apr. '01 to	Generic	Whole	Apr. 5 ⁹ 04 to	6,599	Dart-04sp
				Jun. '04		campus	Jun. 4 '04		
UCSD[5]	275	518	N/A	Sep. 22 '02 to	PDA only	Whole	Whole	275	UCSD-02f
				Dec. 8 '02		campus	trace		

- Traces from environments with various settings.
- In each trace we have AP association history of individual nodes, and we can further derive association time of each node to each AP.

Matrices representation

- **Group association matrix-**Do users have similar association pattern across a period of time?
- Individual association matrix-**Does individual user have** similar association pattern each day?

 $t_{d1,AP1}$

 $t_{d1,AP2}$

d1, APm+1

Each row for an AP

 $t_{dn,AP1}$

 $t_{dn,APm+1}$

INFOCOM Poster and Demo Session 2006

Principal Component Analysis

- Applied as a tool to find the directions that carry most power, or the strongest association trend, in the matrices.
- If the data points show consistent trend, the first few PCs have high relative weights. Otherwise weights distributed across many PCs.

UNIVERSITY OF SOUTHERN CALIFORNIA

Group Association Matrices

- For large, heterogeneous user group, the long-run association patterns are diverse. Many PCs carry some weights, without dominant ones.
 (Dartmouth, USC)
- For smaller, homogeneous user group, dominant PCs exist. (UCSD)
- Weight of i-th PC = $\frac{\lambda_i}{\sum_{k=1}^n \lambda_k}$

$$\lambda_i \equiv i$$
 - th eigenvalue

UNIVERSITY OF SOUTHERN CALIFORNIA

Individual Association Matrices

- For most individuals, their daily association matrices have few PCs that carry most of the power, indicating that nodes show less diverse association pattern across days.
- The graphs show the percentage of nodes for which its p-percentile of power in individual association matrices is carried by x PCs with highest weights.

INFOCOM Poster and Demo Session 2006

Similarity between Individual Nodes

- Principal components of individual association matrices with high weights are the "axes" along which the power of data points can be maximized.
- PCs of a user are unit-length vectors describing the major trends of its association pattern. Each PC's relative importance is given by the eigenvalues.
- We can compare the similarity between 2 sets of individual association pattern by weighted inner-product of the PC set.

Similarity between Individual Nodes

• Similarity index =

 $Sim(U,V) = \sum_{i=1}^{rank(U)} \sum_{j=1}^{rank(V)} w_{u_i} w_{v_j} |u_i \cdot v_j|$

 Following the definition of similarity index, we can put nodes into sub-group, and more weights are carried by fewer PCs for group association matrices of these sub-groups.

ui, vj: PCs from different users *Wui, Wvj*: Weights for PCs in its set

INFOCOM Poster and Demo Session 2006

•Group A/B: based on Sim-index, putting nodes having similar individual association pattern in a group.

- •Group C: random group.
- •Group D: the whole population group.

Similarity between Individual Nodes

- Comparing the weights carried by top-10 PCs between groups formed by sim-index (users are in same group if sim-index higher than threshold) and random groups of the same size.
- If we use higher threshold for similarity index, the groups chosen show higher common trend in association patterns.

(Sim-index threshold = 0.8)

Conclusion

- PCA is applied to find common association trends across multiple users, and across multiple days for individual user. Users do not share a common trend, but most individual users show consistent association trend across days.
- Principal components of a node provides a set of summary vectors to represent the strongest trends of its association pattern.
- Utilizing the similarity indexes, we can group similar users in sub-groups.

Future Work

- Utilize the grouping technique developed to design a routing protocol taking advantage of existing similar user sub-groups.
- Utilize the PCs of nodes to design a anomaly detection scheme to identify when a user deviates from its typical behavior.

References

- Longer tech-report available at http://nile.usc.edu/~weijenhs/PCA-TR.pdf
- [1] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk, and N. Taft, "Structural Analysis of Network Traffic Flows," ACM SIGMETRICS, New York, June 2004.
- [2] M. McNett and G. Voelker, ""Access and mobility of wireless PDA users,"" ACM SIGMOBILE Mobile Computing and Communications Review, v.7 n.4, October 2003.
- [3] T. Henderson, D. Kotz and I. Abyzov, ""The Changing Usage of a Mature Campus-wide Wireless Network,"" in Proceedings of ACM MobiCom 2004, September 2004.

INFOCOM Poster and Demo Session 2006